Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Di-Mei Chen, ${ }^{\text {a }}$ Feng-Yi Xia, ${ }^{\text {b }}$ Mao-Lin Hu, ${ }^{\text {a }} \mathrm{Li} \mathrm{Li}^{\mathrm{c}}$ and Zhi-Min Jin ${ }^{\text {c }}$ *

${ }^{\text {a School of Chemistry and Materials Science, }}$ Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China, ${ }^{\mathbf{b}}$ School of Biological and Environmental Sciences, Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China, and ${ }^{\text {c }}$ College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: zimichem@sina.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.063$
$w R$ factor $=0.185$
Data-to-parameter ratio $=15.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

2,3,5,6-Tetramethylpyrazinium-trichloro-acetate-trichloroacetic acid (1/1/1)

In the title adduct, $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{O}_{2}{ }^{-} \cdot \mathrm{C}_{2} \mathrm{HCl}_{3} \mathrm{O}_{2}$, the tetramethylpyrazine molecule is protonated at one of the N atoms and linked to the trichloroacetate anion via an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. The trichloroacetate anion is also linked to the trichloroacetic acid molecule via an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond.

Comment

Tetramethylpyrazine is mainly used for the clinical treatment of nephrosis and ischemic cerebrovascular disease, due to its function of anticoagulation and angiectasis. It also has a protective effect against ischemic neuronal damage in the hippocampus (Luo, 1994). In the past, some supramolecular compounds have been synthesized with tetramethylpyrazine (Bailey et al., 1992; Adams et al., 1993; Tian \& Yang, 1993; Abourahma et al., 1995; Smyth et al., 1996; Dong et al., 2003). We report here the structure of the title complex, (I).

(I)

Fig. 1 shows the molecular structure of (I) with the atom numbering. In the tetramethylpyrazinium cation (TPM), atom N 2 is protonated, atom N 1 remains neutral and the $\mathrm{C} 7-\mathrm{N} 2-$ C 3 bond angle $\left[124.2(3)^{\circ}\right]$ is larger than $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$ [120.3 (3) ${ }^{\circ}$]. The left and right halves of TPM are slightly different with regard to their bond lengths and angles; they are related by pseudo- C_{2} symmetry. TPM is linked to a trichloroacetate anion via an $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$ hydrogen bond and is further linked to a trichloroacetic acid molecule via an $\mathrm{O} 4-$ $\mathrm{H} 4 \cdots \mathrm{O} 2$ hydrogen bond (Table 2). The bond lengths of $\mathrm{O} 1-$ C 10 [1.217 (5) A] and $\mathrm{O} 2-\mathrm{C} 10$ [1.210 (5) A] are consistent with a delocalized carboxylate group, while the bond lengths of $\mathrm{O} 3-\mathrm{C} 12[1.178(5) \AA]$ and $\mathrm{O} 4-\mathrm{C} 12$ [1.264 (6) Å] are consistent with a carboxylic acid group.

Experimental

A aqueous solution (10 ml) of trichloroacetic acid ($2 \mathrm{mmol}, 0.33 \mathrm{~g}$) was added slowly to an ethanol solution $(10 \mathrm{ml})$ of $2,3,5,6$-tetramethylpyrazine ($1 \mathrm{mmol}, 0.14 \mathrm{~g}$). The mixture was stirred for several minutes and left to stand at room temperature for about two weeks, after which time colorless prismatic crystals were obtained.

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{O}_{2}{ }^{-} \cdot \mathrm{C}_{2} \mathrm{HCl}_{3} \mathrm{O}_{2}$

$M_{r}=462.95$

Triclinic, $P \overline{1}$
$a=9.3627$ (12) £
$b=9.6100$ (13) A
$c=11.7698(15) \AA$
$\alpha=87.956$ (3) ${ }^{\circ}$
$\beta=72.496(2)^{\circ}$
$\gamma=79.561(2)^{\circ}$
$V=993.0(2) \AA^{3}$
$Z=2$
$D_{x}=1.548 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2421
reflections
$\theta=2.2-25.1^{\circ}$
$\mu=0.88 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, colorless
$0.47 \times 0.43 \times 0.39 \mathrm{~mm}$

Data collection

Bruker SMART APEX areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.667, T_{\text {max }}=0.709$
5308 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.185$
$S=1.07$
3520 reflections
229 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0967 P)^{2}\right.$ $+0.7704 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.76 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.42 \mathrm{e}^{-3}$
3520 independent reflections
2898 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.010$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-11 \rightarrow 11$
$k=-11 \rightarrow 10$
$l=-8 \rightarrow 14$

$$
\Delta \rho_{\min }=-0.42 \mathrm{e} \mathrm{~A}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 3-\mathrm{C} 12$	$1.178(5)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.333(5)$
$\mathrm{O} 4-\mathrm{C} 12$	$1.264(6)$	$\mathrm{N} 1-\mathrm{C} 6$	$1.334(5)$
$\mathrm{C} 4-\mathrm{C} 11$	$1.747(4)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.338(5)$
$\mathrm{C} 5-\mathrm{C} 11$	$1.735(4)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.340(5)$
$\mathrm{Cl} 6-\mathrm{C} 11$	$1.743(4)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.508(5)$
$\mathrm{C} 11-\mathrm{C} 12$	$1.535(5)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.384(5)$
$\mathrm{Cl} 1-\mathrm{C} 9$	$1.757(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.484(6)$
$\mathrm{Cl} 2-\mathrm{C} 9$	$1.755(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.484(6)$
$\mathrm{Cl} 3-\mathrm{C} 9$	$1.762(4)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.387(5)$
$\mathrm{O} 1-\mathrm{C} 10$	$1.217(5)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.498(5)$
$\mathrm{O} 2-\mathrm{C} 10$	$1.210(5)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.551(5)$
$\mathrm{O} 3-\mathrm{C} 12-\mathrm{O} 4$	$126.9(4)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$	$120.6(3)$
$\mathrm{O} 3-\mathrm{C} 12-\mathrm{C} 11$	$120.5(4)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$117.8(4)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$	$120.3(3)$	$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 6$	$117.1(3)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 3$	$124.2(3)$	$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$118.4(4)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$121.3(3)$	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{O} 1$	$128.7(4)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$117.0(4)$	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 9$	$114.9(4)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	$116.5(3)$	$\mathrm{O} 1-\mathrm{C} 10-\mathrm{C} 9$	$116.3(3)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$118.0(4)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$	$0.90(5)$	$1.80(5)$	$2.692(4)$	$175(5)$
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 2$	$0.85(8)$	$1.69(8)$	$2.517(5)$	$165(8)$

Figure 1
A view of (I), showing 40% probability displacement ellipsoids. Hydrogen bonds are indicated by dashed lines.

H atoms attached to N and O atoms were located in a difference Fourier map and refined isotropically. Other H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.96 \AA)$ and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

This work was supported by the Wenzhou Technology Project Foundation of China (grant No. S2004A004), the Education Commission of Zhejiang Province (grant No. 20020268) and the National Natural Science Foundation of China (No. B010503).

References

Abourahma, H., Copp, S. B., MacDonald, M. A., Melendez, R. E., Batchilder, S. D. \& Zaworotko, M. J. (1995). J. Chem. Crystallogr. 25, 731-736.

Adams, H., Bailey, N. A., Fenton, D. E. \& Khalil, R. A. (1993). Inorg. Chim. Acta, 209, 55-60.
Bailey, R. D., Buchanan, M. L. \& Pennington, W. T. (1992). Acta Cryst. C48, 2259-2262.
Bruker (2002). SADABS, SAINT, SMART and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Dong, W. J., Li, G. H., Shi, Z., Fu, W. S., Zhang, D., Chen, X. B., Dai, Z. M., Wang, L. \& Feng, S. H. (2003). Inorg. Chem. Commun. 6, 776-780.
Luo, X. (1994). Brain Nerve, 46, 841-846.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Smyth, M. V., Bailey, R. D. \& Pennington, W. T. (1996). Acta Cryst. C52, 21702173.

Tian, Y. \& Yang, P. (1993). Chin. J. Inorg. Chem. 9, 438-439.

[^0]: (C) 2005 International Union of Crystallography

